Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 117: 321-34, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27161176

RESUMO

In this work, we present and discuss a comprehensive set of both newly and previously synthesized compounds belonging to 5 distinct molecular classes of linear aromatic N-polycyclic systems that efficiently inhibits bovine viral diarrhea virus (BVDV) infection. A coupled in silico/in vitro investigation was employed to formulate a molecular rationale explaining the notable affinity of all molecules to BVDV RNA dependent RNA polymerase (RdRp) NS5B. We initially developed a three-dimensional common-feature pharmacophore model according to which two hydrogen bond acceptors and one hydrophobic aromatic feature are shared by all molecular series in binding the viral polymerase. The pharmacophoric information was used to retrieve a putative binding site on the surface of the BVDV RdRp and to guide compound docking within the protein binding site. The affinity of all compounds towards the enzyme was scored via molecular dynamics-based simulations, showing high correlation with in vitro EC50 data. The determination of the interaction spectra of the protein residues involved in inhibitor binding highlighted amino acids R295 and Y674 as the two fundamental H-bond donors, while two hydrophobic cavities HC1 (residues A221, I261, I287, and Y289) and HC2 (residues V216, Y303, V306, K307, P408, and A412) fulfill the third pharmacophoric requirement. Three RdRp (K263, R295 and Y674) residues critical for drug binding were selected and mutagenized, both in silico and in vitro, into alanine, and the affinity of a set of selected compounds towards the mutant RdRp isoforms was determined accordingly. The agreement between predicted and experimental data confirmed the proposed common molecular rationale shared by molecules characterized by different chemical scaffolds in binding to the BVDV RdRp, ultimately yielding compound 6b (EC50 = 0.3 µM; IC50 = 0.48 µM) as a new, potent inhibitor of this Pestivirus.


Assuntos
Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Animais , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/tratamento farmacológico , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Bovinos , Vírus da Diarreia Viral Bovina/enzimologia , Ligação de Hidrogênio , Modelos Moleculares , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , RNA Polimerase Dependente de RNA/efeitos dos fármacos
2.
Antiviral Res ; 87(2): 111-24, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19616028

RESUMO

The alphaviruses were amongst the first arboviruses to be isolated, characterized and assigned a taxonomic status. They are globally very widespread, infecting a large variety of terrestrial animals, insects and even fish, and circulate both in the sylvatic and urban/peri-urban environment, causing considerable human morbidity and mortality. Nevertheless, despite their obvious importance as pathogens, there are currently no effective antiviral drugs with which to treat humans or animals infected by any of these viruses. The EU-supported project-VIZIER (Comparative Structural Genomics of Viral Enzymes Involved in Replication, FP6 PROJECT: 2004-511960) was instigated with an ultimate view of contributing to the development of antiviral therapies for RNA viruses, including the alphaviruses [Coutard, B., Gorbalenya, A.E., Snijder, E.J., Leontovich, A.M., Poupon, A., De Lamballerie, X., Charrel, R., Gould, E.A., Gunther, S., Norder, H., Klempa, B., Bourhy, H., Rohayemj, J., L'hermite, E., Nordlund, P., Stuart, D.I., Owens, R.J., Grimes, J.M., Tuckerm, P.A., Bolognesi, M., Mattevi, A., Coll, M., Jones, T.A., Aqvist, J., Unger, T., Hilgenfeld, R., Bricogne, G., Neyts, J., La Colla, P., Puerstinger, G., Gonzalez, J.P., Leroy, E., Cambillau, C., Romette, J.L., Canard, B., 2008. The VIZIER project: preparedness against pathogenic RNA viruses. Antiviral Res. 78, 37-46]. This review highlights some of the major features of alphaviruses that have been investigated during recent years. After describing their classification, epidemiology and evolutionary history and the expanding geographic distribution of Chikungunya virus, we review progress in understanding the structure and function of alphavirus replicative enzymes achieved under the VIZIER programme and the development of new disease control strategies.


Assuntos
Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/virologia , Alphavirus/classificação , Alphavirus/patogenicidade , Pesquisa Biomédica/tendências , Alphavirus/efeitos dos fármacos , Alphavirus/enzimologia , Animais , Pesquisa Biomédica/organização & administração , Vírus Chikungunya/patogenicidade , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , União Europeia , Humanos , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...